Difference between revisions of "S-61R Pelican/Systems"

From
Jump to: navigation, search
(Fuel System)
(Electrical System)
Line 323: Line 323:
  
 
=== Electrical System ===
 
=== Electrical System ===
 +
 +
[[File:s61-elec-sys.png|thumb|right|
 +
<figure id="fig:elecsys"><caption>Electrical Systems</caption></figure>
 +
]]
  
 
==== Overview ====
 
==== Overview ====
  
 
==== Electrical Panel ====
 
==== Electrical Panel ====
 
  
 
=== Utility Systems ===
 
=== Utility Systems ===

Revision as of 19:38, 13 June 2020

SECTION 2. SYSTEMS

1 Helicopter

1.1 General

The Shergood S-61R is a twin-turbine engine helicopter designed for transportation of cargo and for search-and-rescue operations in day, night, visual and instrument conditions. The helicopter is powered by two 1,400 shp General Electric T58-GE-10 turbo-shaft engines mounted above the main cabin in front of the main transmission. Drive shafts from each engine is connected to the main transmission through a mixing unit such that the rotors will continue to spin even if one engine fails. When the rotors are not turning, an APU (Auxilary Power Unit) can be used to supply electrical power and hydraulic pressure. Fuel is carried in compartments in the lower hull of the helicopter with forward and aft auxilary and main tanks. An entrance door is located on the forward right side of the main cabin, while a hydraulically powered ramp is in the back. The helicopter is fully amphibious with a "flying boat" style design.

1.2 Gross Weight

The maximum gross weight is 22,050 pounds.

1.3 Pilot-Side Instrument Panel

S61R-Pilot-Panel.png

Figure 1: Pilot-side instrument panel
1. Marker Beacon Intensity 2. RAWS Warning 3. Fire Warning Test 4. Tail-Number plate
5. Marker Beacon Light 6. Fire Warning Light 7. Master Warning Light 8. Torque Indicator
9. Airspeed Indicator 10. Attitude Indicator 11. Radar Altimeter 12. Tri-Needle RPM
13. Vertical Speed Indicator 14. HSI 15. Altimeter 16. AFCS Indicator
17. Turn/Slip Indicator 18. Clock 19. Radio-Magnetic Indicator


The right portion of the main panel (shown in Figure 1) is intended primarily for use by the pilot sitting in the right-hand seat.

1.4 Co-Pilot-Side Instrument Panel

S61R-Copilot-Panel.png

Figure 2: Co-pilot-side instrument panel
1. Master Caution Light 2. Fire Warning Light 3. Marker Beacon Light 4. Tail-Number plate
5. Torque Indicator 6. Airspeed Indicator 7. Attitude Indicator 8. Radar Altimeter
9. Tri-Needle RPM 10. Vertical Speed Indicator 11. HSI 12. Altimeter
13. AFCS Indicator 14. Turn/Slip Indicator 15. Clock 16. Radio-Magnetic Indicator


The co-pilot side instrument panel is shown in Figure 2.

1.5 Center Instrument Panel

S61R-Center-Panel.png

Figure 3: Center instrument panel
1. Fuel Panel 2. N1 Gauge 3. Turbine Inlet Temp (TIT) 4. Fuel Flow
5. Oil Pressure 6. Oil Temp. 7. Trans. Temp & Press. 8. Gear Panel
9. Hydraulic Pressure 10. Warning/Alert Panel 11. GPS Moving Map

1.6 Overhead Panel

S61R-Overhead-Panel.png

Figure 4: Overhead panel
1. Ice Protection 2. Exterior Lighting 3. Windshield Wiper/Wash 4. Rotor Brake Press.
5. Rotor Brake 6. Interior Lighting 7. System Master Switches 8. Electrical Systems
9. Ignition 10. Hoist Cable Shear 11. Fire Protection 12. Start Mode
13. Starter 14. Engine Control 15. Emergency Throttles

1.7 Middle Panel

S61R-Middle-Panel.png

Figure 5: Middle panel
1. IFF Trasponder 2. GPS Panel 3. #1 NAV Radio 4. #2 NAV Radio
5. Rear Ramp Control 6. Parking Brake 7. Nosewheel Lock 8. Navigation Control
9. Doppler Panel 10. Antenna Control 11. #1 COM Radio 12. #2 COM Radio
13. Emergency Gear Down 14. Fuel Dump Panel 15. AFCS 16. Hydraulic System Select
17. Hoist Control 18. Spotlight Control

1.8 Landing Gear Systems

Figure 6: Landing Gear Panel

The S61 has a tricycle type landing gear system with a nosewheel in front and two main gear in sponsons in the back. The gear is hydraulically actuated through the utility hydraulic system. The system includes a squat switch to prevent accidentally raising the gear while the helicopter is on the ground.

1.8.1 Landing Gear Panel

The landing gear panel (see Figure 6) is located on the center portion of the main console. Three lights on the right-hand side of the panel illuminate green when the respective gear is down and locked. The gear is controlled by a two position lever with a red "in motion" indicator light. The light illuminate when the landing gear are in motion. A test button labeled "HLD LT TEST" can be pressed to test the "in motion" indicator light. Finally, a DN LCK REL button can be used to override the squat switch allowing gear to be raised while on the ground.

Figure 7: Emergency Gear Down Handle
Figure 8: Kneel Switch
Figure 9: Parking Brake and Nosewheel Lock
1.8.2 Landing Gear Malfunctions

Normal wear and tear, or damage through a hard landing can cause the landing gear to malfunctions. Malfunctions may affect retracting, lowering or both. When changing the gear position always verify the red "in-motion" light on the handle comes on, then goes out several seconds later. When lowering gear, always verify you get three green lights indicating the gear is down and locked.

In the event that the gear fails to retract, travel to the next point of landing can be continued, but caution should be used to keep the landing as soft as possible. In the event that gear fails to lower, there is an emergency gear handle (see Figure 7) on the copilot side of the middle console. This handle deploys a compressed air bottle to force the gear into the down position. After use, the air bottle must be replaced before it can be used again. Once the emergency gear extension system is activated, the gear is prevented from retracting until repairs are made to the gear system.

1.8.3 Kneel System

A nose gear kneel switch (see Figure 8) is located on the upper console. This switch is only effective when the landing gear handle is in the down position. Flipping this switch will cause the nose wheel to retract to a 50% retracted position. This can be used to increase the clearance under the tail for loading the helicopter through the ramp. Like the landing gear system, the kneel system requires utility hydraulic pressure to operate.

1.9 Parking Brake

A parking brake (see Figure 9) is located on the pilot side of the middle console. Activating the parking brake will increase resistance to ground movement. Click the handle to toggle its position, or use the chat command:

s brake

to toggle it.

1.10 Nose Wheel Lock

A nosewheel lock (see Figure 9) is located on the pilot side of the middle console just below the parking brake. Activating the parking brake will increase resistance to rotation while on the ground. Click the handle to toggle its position, or use the chat command:

s noselock

to toggle it. The nosewheel lock should be used during rotor engagement to prevent the helicopter from turning on the ground during the high-torque stages of engagement.

2 Emergency Equipment

Figure 10: Engine Fire Detection System
Figure 11: APU Fire Detection System
Engine Warning Test Panel/caption>

2.1 Engine Fire Detection System

The S61 is equipped with fire sensors and two fire extinguisher bottles to detect and mitigate engine fires. The fire detection system for the #1 and #2 engines is power by the #1 and #2 AC bus, respectively. The fire detection panel is located on the upper console behind the throttle quadrant (see Figure 10). The panel has two fuel cut-off handles for each engine. The handles will light up when a fire is detected (if AC power is available). Pulling a handle will cut off fuel to an engine through a mechanical linkage.

The fire extinguishers are activate by a 3-position toggle switch between the fuel cut-off handles. The switch will have no effect except when a handle is pulled. This switch should normally be left in the middle OFF position. When deploying an extinguisher, first pull the cut-off handle for the affected engine, then switch the FIRE EXT switch to MAIN. This will deploy the bottle corresponding to the affected engine (#1 bottle for #1 engine, #2 bottle for #2 engine). If a single bottle is insufficient to extinguish a fire, you can switch the FIRE EXT switch to the RESERVE position. This will deploy the bottle from the opposite engine (#2 bottle for #1 engine, or #1 bottle for #2 engine). The fire extinguisher bottles are single use. Once they have been used, they must be replaced on the ground.

2.2 APU Fire Detection System

The APU fire detection panel (see Figure 11) is on the APU panel located on the pilot's side panel. The APU fire detection and mitigation system operates off the DC bus. A warning light will illuminate to indicate a fire has been detected. To activate the fire suppression system, flip the FUEL SHUT OFF switch and FIRE EXTING switches to the forward position.

2.3 Fire Warning Test Panel

A fire warning test panel is located on the pilot side of the main panel (see Figure 12). The panel contains a three-position switch. Flipping the switch to either side from the center position will test the fire detection system and lights for the indicated systems. When the switch is moved to the left marked NO 1 ENG, the fire detection warning light in the Engine #1 fuel cut-off handle will illuminate. When the switch is moved to the right marked NO 2 ENG & APU, the fire detection warning light in the Engine #2 fuel cut-off handle will illuminate, as well as the warning light for the APU.

2.4 Emergency Lights

Figure 13: Emergency Lights
Figure 14: Ramp Release

Emergency lights (see Figure 13) are installed at various positions in the helicopter and provide lights for emergency evacuation in the event of a crash. They are controlled by a three position switch labeled EMER EXIT LIGHTS on the pilot-side of the upper console. In the TEST position, all emergency lights will turn on for testing. In the OFF position, the lights will always remain OFF. In the ARM position (recommended for normal flight), the emergency lights will come on in the event of a sudden acceleration or shock. Once the shock sensor has been tripped, it must be manually reset by clicking on one of the emergency lights in the helicopter.

2.5 Emergency Ramp Release

An emergency ramp release (see Figure 14) is located in the rear of the aircraft on the right side near the ramp. Pulling this lever will disconnect the ramp from the hydraulic actuators and allow it to fall by gravity. Click the lever again to reengage the hydraulic actuators and restore normal functioning to the ramp.

3 Engines and Related Systems

3.1 General

Figure 15: Pelican engine controls overlay.

The S61-R is powered by two General Electric T58-GE-10 turboshaft engines delivering 1,400 shp each. The engines are mounted above the main cabin in front of the main transmission.

3.2 Engine Control Levers

Engine control levers and emergency throttles are located on the forward overhead panel between the pilot and copilot seats. In normal operation, only the yellow engine control levers are used. To operate the levers, click in the general area of the lever to bring up the control overlay (see Figure 15). Once the overlay is active, clicking on one of the scales will move the lever under it to the selected position. To dismiss the control overlay, you can click the "X".

The blue scales in the center part of the overlay are used for the engine control levers. Clicking on one of the one of the wide blue scales will move the lever under it to the selected position. There are stops at "SHUT OFF", "GRD IDLE" (ground idle) and "MIN GOV" (minimum governed) positions. Above "MIN GOV", the engine control lever is analog and can be placed at any position to operate the engine at a specific RPM. A "100% SPEED" marking shows the approximate position for 100% RPM. In normal operations, RPM should be between 90% and 110%.

Next to each engine scale is a narrower "trim" scale. Clicking on the trim scale will nudge the engine control in the indicated direction relative to the center point. The further you click from the center point of the scale, the larger the nudge will be.

Between the two throttles is a paired scale. Clicking on this scale will move both engine control levers to the indicated position.

The engine control levers do not directly control the throttles on the engine. Instead they command a fuel controller to maintain a specific RPM. As the load on the engine is increased, the throttle is opened to maintain that RPM.

3.3 Emergency Throttle Levers

On the outside of the engine control quadrant are two emergency throttle levers. In normal operation, they are left in the CLOSED position. In the event of a fuel controller failure, the throttle will "stick" in its position when the controller failed. The emergency throttle levers have a mechanical linkage that allows them to open the throttle beyond the point where it failed, but the throttle cannot be closed through use of the emergency throttles. In practice, the first part of travel of the emergency control lever will have no effect until it is opened beyond the point of the stuck position.

When using an emergency throttle in flight, care should be taken to make collective movements as slow and gradual as possible to avoid overspeeding the engine. Adjustments to the collective or an emergency throttle should always be done while monitoring engine and rotor rpm.

To move an emergency throttle, click on one of the red scales of the engine control overlay. The large scales move the throttle to the selected position, while the smaller scales next to it are for trim, nudging the throttle in the indicated direction.

Figure 16: Ignition Switches

3.4 Ignition System

Ignition switches are located on the lower left side of the upper console. There is one three position rocker switch for each engine. The ignition system is powered by the DC bus. In the center OFF position, the engine igniters are deenergized. A spring-loaded TEST position for each rocker can be used to test the igniters. When held in the TEST position with DC power active, a clicking sound will be heard. The igniters should never be tested except when the engine control levers are in the SHUT OFF position, the starters are not running, and the engine fuel values are closed. In the NORM position, the igniters will activate while the starter is running. This position should be used for normal start and while engine is operating.

WARNING: Do not advance engine control levers out of SHUT OFF with the igniters active until N2 is above 20%.

3.5 Starter System

Figure 17: Starter Switch
Figure 18: Start Mode

Each engine is equipped with an electric starter powered by the DC Bus. The starter is activated by a three-position rocker switch on the upper console, one for each engine (see Figure 17). To engage the starter, momentarily move the switch to the START position. The switch is spring loaded an will return to the center position, but the starter will continue to run. The starter will turn the compressor stage (N1) of the engine up to 26% to allow normal flow of fuel and air for an engine start. Pressing the ABORT side of the starter switch will disengage the starter motor.

When the start mode switch (see Figure 18) is in the NORMAL position, the starter will automatically disengage when N2 exceeds 35% as the engine spins up during start. Placing the start mode switch in the MANUAL position will disable this behavior.

The electrical field from the starter motor will cause a change in the heading indicated on the magnetic compass. For this reason, it is suggested that the crew note the magnetic compass heading before engaging the starter so that they can confirm the starter disengages after the engine has started. This change in the compass is the only way to know that the starter has disengaged.

4 Fuel System

Figure 19: Fuel System


4.1 Fuel System Overview

4.2 Fuel System Control Panel

4.3 Fuel Tank Capacities

4.4 Gravity Refueling

4.5 Pressure Refueling

4.6 Fuel Dumping

5 Flight Controls and AFCS

5.1 Flight Controls

5.2 Doppler

5.3 Hover Assist

5.4 AFCS

5.4.1 Channel Monitor Panel

5.5 AFCS Chat Commands

6 Hydraulic Systems

Figure 20: Primary and Auxiliary Hydraulic Systems
Figure 21: Utility Hydraulic System

6.1 General

7 Power Train System

8 Rotor System

9 Electrical System

Figure 22: Electrical Systems

9.1 Overview

9.2 Electrical Panel

10 Utility Systems

10.1 Ramp

11 Lighting

12 Master Alert/Caution Panel